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A popular method
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Difference-in-differences

“Canonical” 2-by-2 DiD – special case of a longitudinal model: compare outcomes

• before and after the treatment (Postt = 0 and Postt = 1, respectively)
• between the treated and the controls (Di = 1 and Di = 0, respectively)

The change in outcomes for the controls (which should not be affected by the
treatment) provides a counterfactual for the change in outcomes for the treated in the
absence of treatment

Main identifying assumption
parallel paths in the absence of treatment (not necessarily same level)
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Difference-in-differences
Example
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Difference-in-differences
Example

• importance of the control group
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Difference-in-differences
Example

• importance of the control group
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Difference-in-differences
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Difference-in-differences
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Difference-in-differences
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Difference-in-differences
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Difference-in-differences
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Difference-in-differences
• In regression form: Yit = α+ βDi + γPostt + δDi · Postt + ϵit
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Difference-in-differences
• In regression form: Yit = α+ βDi + γPostt + δDi · Postt + ϵit

• With more than 2 units and/or periods can control for more dimensions of
heterogeneity

I. unit fixed effects (drop Di): Yit = α+ θi + γPostt + δDi · Postt + ϵit

II. unit & time fixed effects (drop Di and Postt): Yit = θi + ηt + δDi · Postt + ϵit

III. dynamic DiD – Event study

Yit = θi + ηt +
+T∑

k=−T

δkDi · 1(t = k) + ϵit

Including lags into the DiD model is an easy way to analyze pre-treatment trends

Leads can be included to analyze whether the treatment effect changes over time
after assignment
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Staggered difference-in-differences

Most DiD applications diverge from the 2-by-2 setting because treatment occurs at
different timings → Staggered DiD

Yit = θi + ηt + δDit + ϵit

• θi: unit fixed effects
• ηt: time fixed effects
• Dit: dummy variable for treated units (switching after t∗i , treatment timing for

each i)

15 / 40



Staggered difference-in-differences
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Staggered difference-in-differences

What does δ estimate in this case? [see Goodman-Bacon, 2021, for details]

• It is a weighted average of all possible 2-by-2 DiD estimators that compare
timing groups to each other

• Some use treated units as treatment group and untreated units as control group
• Some use later-treated units as control (before treatment occurs) and early-treated

as treatment
• Some use early-treated as control (after treatment occurs) and later-treated as

treatment

• Weights are proportional to group sizes and the variance of the treatment dummy
in each pair
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Staggered difference-in-differences
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Application – The Child Penalty

Are gender inequality and fertility linked?

How much of gender inequality can be explained by children?

• The child penalty (aka the motherhood penalty): The causal impact of having
children on the outcomes of women relative to men

• Questions:
• How do we estimate the child penalty?
• How large is it?
• How does it vary across time and space?
• What are the underlying determinants?
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Application # 1 – Kleven, Landais, Søgaard (2019)

The paper provides estimates of the child penalty using detailed administrative data for
Denmark

Long-run child penalty – difference in labor earnings between mothers and fathers
10/20 years after birth of first child

Decomposition of the child penalty into
• changes in participation – extensive margin of labor supply
• changes in hours worked – intensive margin of labor supply
• changes in wage rates
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Application # 1 – Kleven, Landais, Søgaard (2019)

Empirical strategy

• Event study around childbirth for fathers and mothers. Regression:

Y g
ist =

∑
j ̸=−1

αg
j · 1(j = t)

︸ ︷︷ ︸
event time dummies

+
∑

k

βg
k · 1(age = is)︸ ︷︷ ︸
age dummies

+
∑

y

γg
y · 1(y = s)︸ ︷︷ ︸

year dummies

+νg
ist

• Regression is estimated separately for men and women with t ∈ (−5, . . . , 10) (i.e.,
between 5 years prior to childbirth until 10 years after)
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• Child penalty at event time t

Pt ≡ α̂m
t − α̂w

t

E[Ỹ w
ist|t]

→ difference in event study coefficients for men (m) and women (w) divided by
the predicted outcome when omitting the contribution of the event dummies, i.e.
Ỹ g

ist =
∑

k β̂
g
k · 1(age = is) +

∑
y γ

g
y · 1(y = s)

→ they do so to keep the zeroes and consider both extensive and intensive margin

Data

• Administrative data on Denmark (in various spin-offs, extended to many other
countries)
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What is the contribution of children to gender inequality?

Estimate regression with year-by-event dummies and control for observables (age,
education)

Y g
ist =

∑
y

∑
j ̸=−1

αg
yj · 1(j = t) · 1(y = s) +

∑
k

βg
kX

g
kis + νg

ist

Define ∆s ≡ {E [Y m
ist − Y w

ist]}/E [Y w
ist] the gender pay gap in year s. Then:

∆̂s =
E

[
PstỸ

w
ist|s

]
E

[
Ŷ m

ist|s
]

︸ ︷︷ ︸
child penalties

+
∑

k

(
β̂m

k − β̂w
k

)
E [Xm

kis|s]

E
[
Ŷ m

ist|s
]

︸ ︷︷ ︸
different returns to Xs

+
∑

k β̂
w
k {E [Xm

kis] − E [Xw
kis]}

E
[
Ŷ m

ist|s
]

︸ ︷︷ ︸
differences in Xs
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What is the contribution of children to gender inequality?
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What explains the child penalty?
Culture?

In more gender conservative countries
the child penalty is larger

27 / 40



What explains the child penalty?
Childcare availability?

• No significant effects of childcare expansion in Austria (Kleven et al., 2021)
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What explains the child penalty?
Parental leave length?

• Short-run effects of parental leave expansion in Austria (Kleven et al., 2021)
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Application # 2 – Casarico and Lattanzio (2021)

Research questions

• Provide evidence on the short- and long-run impact of motherhood on female
labour market outcomes for Italy

• Study sorting of women with and without children across different types of firms
after childbirth and assess the firm contribution to child penalties

• Investigate the individual-level, firm-level and cultural factors, which
reinforce/mitigate the child penalty
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Application # 2 – Casarico and Lattanzio (2023)

Data

• Social security matched employer-employee administrative data (LoSaI) –
1985-2018

• Data contains information
• on labour contracts (annual earnings, weeks worked, full-/part-time, occupation)
• on workers’ characteristics (gender, birth year, region of residence)
• crucially, on when female workers take maternity leave

• Maternity leave: mandatory duration of 5 months; can be taken 1 to 2 months
before childbirth
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Application # 2 – Casarico and Lattanzio (2023)

Empirical strategy

• Focus on working women, birth cohorts 1945-78, 18-55 years old, with age at
childbirth between 18-40

• We use information on maternity leave as a proxy for first childbirth

• We build a sample of placebo non-mothers:
• Women born between 1945 and 1978 who did not take any leave between 1985 and

2018
• Assign age at birth to non-mothers by drawing from log-normal distribution of age at

birth for mothers by cohort and quartiles of AKM worker effects
Details AKM
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Empirical strategy cont’d

• Event study around childbirth comparing labour market outcomes for mothers
(G(i) = M) and placebo non-mothers (G(i) = N)

y
G(i)
its = αi +

∑
k ̸=−1

β
G(i)
k · 1(k = s) +

∑
y

γG(i)
y · 1(y = t) + ε

G(i)
its ,

where
• αi: individual fixed effects
• ∑

k ̸=−1 1(k = s): event time dummies, k = {−5, ..., 15}
• ∑

y 1(y = t): year dummies, t = 1985, ..., 2018
• ε

G(i)
its : error term

• Long-run child penalty = βM
15 − βN

15
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Results
Log annual earnings
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Results
Decomposition

Part-time related penalty

Weeks related penalty

Wage related penalty

Total child penalty in annual earnings
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Results
Sorting - Log value added per worker
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Child penalty in log annual earnings
By worker characteristics
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Child penalty in log annual earnings
By firm characteristics
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Child penalty in log annual earnings
By cultural factors
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Placebo births

First step – identify control group of non-mothers
1. Women born in 1945-1978 (not yet 40 by 1985 and who turn 40 by 2018): those

who do not have a child enter the group of never mothers
2. Assign placebo age at birth to non-mothers, by drawing from actual distribution

of age at birth for mothers.
• assume distribution of age at birth Ac,q ∼ LN (µ̂c,q, σ̂c,q), where mean µ̂c,q and

variance σ̂c,q are from actual distribution for mothers within cells of birth cohort c
and quartiles of worker fixed effects q AKM

→ assign random draw from this distribution to actual never mothers
Back



AKM
We derive measures of workers’ skills and firm pay policy from AKM worker and firm
fixed effects (Abowd et al., 1999)

• Estimate the following regression over 1985-2018 on the largest connected set of
male and female workers

wit = αi + ψJ(i,t) +X ′
itβ + εit

where
• wit: log weekly wages of worker i in year t
• αi: worker fixed effects
• ψJ(i,t): firm fixed effects
• Xit: cubic polynomials in age and tenure, dummies for blue- and white-collar

workers, dummy for part-time workers – in levels and interacted with female dummy
– and year dummies

• εit: error term
Appendix Back
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