Difference-in-differences and event studies
with an application to the child penalty

Salvatore Lattanzio

Public Economics, A.Y. 2023/2024
Bocconi University, Milan



A popular method

A: Difference-in-Differences C: Event Study
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Outline

. Difference-in-differences and event studies

® Canonical (2-by-2)
® Staggered

. Kleven, Landais, Sggaard (2019)

. Casarico and Lattanzio (2021)

. Applications in Stata
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Difference-in-differences

“Canonical” 2-by-2 DiD - special case of a longitudinal model: compare outcomes

® before and after the treatment (Post; = 0 and Post; = 1, respectively)
® between the treated and the controls (D; =1 and D; = 0, respectively)

The change in outcomes for the controls (which should not be affected by the
treatment) provides a counterfactual for the change in outcomes for the treated in the
absence of treatment

Main identifying assumption
parallel paths in the absence of treatment (not necessarily same level)
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Homicides per 100,000 residents

Difference-in-differences

Example

Homicide and Execution in the United States
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Difference-in-differences

Example

Homicide Rates and the Death Penalty in the U.S. and Canada
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® importance of the control group
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Difference-in-differences
Example
Homicide Rates in the United States

————— Controls: Non-death penalty states
Treatment states (all others)
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® importance of the control group
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Difference-in-differences

Y(D =1,P=0)
[

Post, =0 Post, =1 time
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Difference-in-differences
Y(D=1P=1)
o

Y(D =1,P = 0) AY( =1)

Post, =0 Post, =1 time
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Difference-in-differences

Y(D=1,P=1)
@
AY(D =1
Y(D =1,P=0) ( )
@
what part of the change can be
attributed to the treatinent?
Post, =0 Post, =1 time
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Difference-in-differences

Y(D=1,P=1)
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Difference-in-differences

Y(D=1,P=1)
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Difference-in-differences
® In regression form: Y;; = o+ BD; + vPost, + 0 D; - Post, + €3
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Difference-in-differences

® In regression form: Y;; = a + BD; + yPost; + 6 D; - Post; + €3

e With more than 2 units and/or periods can control for more dimensions of
heterogeneity

unit fixed effects (drop D;): Yz = a + 0; + yPost; + dD; - Post; + €4
unit & time fixed effects (drop D; and Post:): Yit = 0; + nt + 0D; - Posty + €
dynamic DiD — Event study

+T
Yie =0; +n + Z 0kD; - 1(t =k) + €t
k=T

Including lags into the DiD model is an easy way to analyze pre-treatment trends

Leads can be included to analyze whether the treatment effect changes over time
after assignment
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Staggered difference-in-differences

Most DiD applications diverge from the 2-by-2 setting because treatment occurs at
different timings — Staggered DiD

Yit = 0; + 1t +0Djs + €5

® ¢.: unit fixed effects
® 7 time fixed effects

¢ D;;: dummy variable for treated units (switching after ¢}, treatment timing for
each 1)

15 /40



Staggered difference-in-differences

Figure 1. Difference-in-Differences with Variation in Treatment Timing: Three Groups
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Staggered difference-in-differences

What does 0 estimate in this case? [see Goodman-Bacon, 2021, for details]

® |t is a weighted average of all possible 2-by-2 DiD estimators that compare
timing groups to each other

® Some use treated units as treatment group and untreated units as control group

® Some use later-treated units as control (before treatment occurs) and early-treated
as treatment

® Some use early-treated as control (after treatment occurs) and later-treated as
treatment

® Weights are proportional to group sizes and the variance of the treatment dummy
in each pair
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Figure 2. The Four Simple (2x2) Difference-in-Differences Estimates from the Three Group
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Application — The Child Penalty

Are gender inequality and fertility linked?
How much of gender inequality can be explained by children?

® The child penalty (aka the motherhood penalty): The causal impact of having
children on the outcomes of women relative to men

® Questions:

How do we estimate the child penalty?
How large is it?

How does it vary across time and space?
What are the underlying determinants?
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Application # 1 — Kleven, Landais, Sggaard (2019)

The paper provides estimates of the child penalty using detailed administrative data for
Denmark

Long-run child penalty — difference in labor earnings between mothers and fathers
10/20 years after birth of first child

Decomposition of the child penalty into
® changes in participation — extensive margin of labor supply
® changes in hours worked — intensive margin of labor supply

® changes in wage rates
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Application # 1 — Kleven, Landais, Sggaard (2019)

Empirical strategy

® Event study around childbirth for fathers and mothers. Regression:

Y = Z a —i—Zﬁ - 1(age = is —|—Z’y =s)+v,

J#—1 v
event time dummies age dummies year dummies
® Regression is estimated separately for men and women with ¢ € (=5,...,10) (i.e.,

between 5 years prior to childbirth until 10 years after)
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® Child penalty at event time ¢

& — oy
[ zst‘t]

P, =

— difference in event study coefficients for men (m) and women (w) divided by
the predicted outcome when omlttlng the contribution of the event dummies, i.e.

zst_zklgk (age_l‘s)—i_z ’}/ (y—S)

— they do so to keep the zeroes and consider both extensive and intensive margin

Data

¢ Administrative data on Denmark (in various spin-offs, extended to many other
countries)
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Panel A. Earnings
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FIGURE 1. IMPACTS OF CHILDREN

Panel B. Hours worked
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Panel A. Occupational rank Panel B. Probability of being manager
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What is the contribution of children to gender inequality?

Estimate regression with year-by-event dummies and control for observables (age,
education)

Yigt = Z Z aZj A =1t) - L(y=s)+ ZﬁngiZis + Vgst
Y A1 k
Define A, = {E[Y;l} = Y%]}/E[Y;%)] the gender pay gap in year s. Then:
_ B[Patinls] S (Br - B2) PR 5, (B X - BIXE)
S — A A A
E [Ym s} E [Ym s} E [Ym s]

ist ist 1st

child penalties different returns to Xs differences in Xs
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What is the contribution of children to gender inequality?

Panel B. Child-related gender inequality versus education-related gender
inequality (post-child effects versus pre-child effects)
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Long-run child penalty in earnings
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What explains the child penalty?
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What explains the child penalty?

Childcare availability?
Figure 9: Estimated Effects of Nursery Care Expansions

Difference-in-Differences Evidence

(a) Earnings 1 Year Before Birth (b) Earnings 1-2 Years After Birth
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* No significant effects of childcare expansion in Austria (Kleven et al., 2021)
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What explains the child penalty?

Parental leave length?

Figure 3: Parental Leave Reforms: Dynamic RD Estimates & Causal Effects on Child

Penalties
(a) 1990 Reform: Dynamic RD Estimates (b) 1990 Reform: Effects on Child Penalties
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Short-run effects of parental leave expansion in Austria (Kleven et al., 2021)
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Application # 2 — Casarico and Lattanzio (2021)

Research questions

® Provide evidence on the short- and long-run impact of motherhood on female
labour market outcomes for Italy

® Study sorting of women with and without children across different types of firms
after childbirth and assess the firm contribution to child penalties

® |nvestigate the individual-level, firm-level and cultural factors, which
reinforce/mitigate the child penalty
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Application # 2 — Casarico and Lattanzio (2023)

Data

® Social security matched employer-employee administrative data (LoSal) —
1985-2018

e Data contains information

® on labour contracts (annual earnings, weeks worked, full-/part-time, occupation)
® on workers' characteristics (gender, birth year, region of residence)

® crucially, on when female workers take maternity leave

® Maternity leave: mandatory duration of 5 months; can be taken 1 to 2 months
before childbirth
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Application # 2 — Casarico and Lattanzio (2023)

Empirical strategy
® Focus on working women, birth cohorts 1945-78, 18-55 years old, with age at
childbirth between 18-40

® We use information on maternity leave as a proxy for first childbirth

® We build a sample of placebo non-mothers:

® Women born between 1945 and 1978 who did not take any leave between 1985 and
2018

® Assign age at birth to non-mothers by drawing from log-normal distribution of age at
birth for mothers by cohort and quartiles of AKM worker effects
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Empirical strategy cont’d

® Event study around childbirth comparing labour market outcomes for mothers
(G(i) = M) and placebo non-mothers (G(i) = N)

ygii) =qa; + Z ‘;3]?( 1(k=s) —i—Z’yG(Z y—t)—i—am(),
k#—1

where

® «;: individual fixed effects
® > jz_1 (k= s): event time dummies, k = {-5,..., 15}
* >, 1y =1): year dummies, t = 1985, ..., 2018

G()
° Eits

. error term
® |ong-run child penalty = 6% — ﬁ{\g
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Coefficients relative to t-1
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Child penalty, coefficients relative to t-1

Results

Decomposition

Total child penalty in annual earnings
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Coefficients relative to t-1
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Child penalty

Child penalty in log annual earnings

By worker characteristics
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Child penalty

Child penalty in log annual earnings

By firm characteristics

0.00

-0.204

-0.40+

-0.604

-0.80

-1.004

-1.20
T

—=&—— Low-wage firm
—&—— High-wage firm

T T T T T T T T
6 7 8 9101112131415
maternity

S —
345
Years from

(a) By AKM firm effect

Child penalty

0.00

-0.20

-0.40

-0.60

-0.801

-1.00

—e—— Low female share
——&—— High female share

-1.20
T

T T T T T T T T T
6 7 8 9101112131415
maternity

T
3 4

T
5
Years from

(b) By female share at the firm

38/40



Child penalty
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Placebo births

First step — identify control group of non-mothers

1. Women born in 1945-1978 (not yet 40 by 1985 and who turn 40 by 2018): those
who do not have a child enter the group of never mothers

2. Assign placebo age at birth to non-mothers, by drawing from actual distribution
of age at birth for mothers.

® assume distribution of age at birth A, , ~ LN (fic,q,0c,q), Where mean fi., and
variance 0. 4 are from actual distribution for mothers within cells of birth cohort ¢
and quartiles of worker fixed effects ¢

— assign random draw from this distribution to actual never mothers



AKM

We derive measures of workers' skills and firm pay policy from AKM worker and firm
fixed effects (Abowd et al., 1999)

® Estimate the following regression over 1985-2018 on the largest connected set of
male and female workers

Wi = o + Py + XipB + €t

where

® w;;: log weekly wages of worker i in year ¢

® «;: worker fixed effects

® Y- firm fixed effects

® X, cubic polynomials in age and tenure, dummies for blue- and white-collar
workers, dummy for part-time workers — in levels and interacted with female dummy
— and year dummies

® ¢, error term
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