Difference-in-discontinuities with an application to fiscal policy

Salvatore Lattanzio

Public Economics, A.Y. 2023/2024 Bocconi University, Milan

Outline

1. Introduction

2. Identification

3. Difference-in-discontinuities in practice

4. Grembi, Nannicini, Troiano (2016)

Introduction

- Difference-in-discontinuities is a combination of difference-in-differences and regression discontinuity
- Use it when regression discontinuity is not "enough", e.g. when other policies jump discontinuously at the cut-off
- Example:
 - abolition of fiscal rules for Italian municipalities below 5,000 residents in 2001
 - same cut-off: jump in mayor's wage

Example

Fiscal rules relaxed for municipalities below 5,000 residents

Year	Target of the DSP rules	Covered municipalities	
1997	None	All	
1998	None	All	
1999	Fiscal gap: zero growth	All	
2000	Fiscal gap: zero growth	All	
2001	Fiscal gap: max 3 percent growth	Above 5,000	
2002	Fiscal gap: max 2.5 percent growth	Above 5,000	
2003	Fiscal gap: zero growth	Above 5,000	
2004	Fiscal gap: zero growth	Above 5,000	

TABLE 1—RULES OF THE DOMESTIC STABILITY PACT (DSP)

Notes: The Domestic Stability Pact is a set of fiscal rules imposed by the central government to discipline the fiscal management of local governments. The main target is the *Fiscal gap* (see online Appendix Table A1 for details). The growth of the fiscal gap with respect to its value two years before is constrained to be either 0 or below 2.5 percent/3 percent depending on the year of the DSP.

Example

Wage of mayor (and executive committee) increases at the 5,000 cut-off

Population	Wage of mayor	Wage of executive committee (%)	Size of executive committee	Size of city council	Electoral rule
Below 1,000	1,291	15	4	12	Single
1,000-3,000	1,446	20	4	12	Single
3,000-5,000	2,169	20	4	16	Single
5,000-10,000	2,789	50	4	16	Single
10,000-15,000	3,099	55	6	20	Single
15,000-30,000	3,099	55	6	20	Runoff
30,000-50,000	3,460	55	6	30	Runoff
50,000-100,000	4,132	75	6	30	Runoff
100,000-250,000	5,010	75	10	40	Runoff
250,000-500,000	5,784	75	12	46	Runoff
Above 500,000	7,798	75	14–16	50-60	Runoff

TABLE 2—LEGISLATIVE THRESHOLDS FOR ITALIAN MUNICIPALITIES, 1997–2004

Intuition

- Wage of mayor is correlated with mayor's characteristics and policy decisions (Gagliarducci and Nannicini, 2013)
- Hence, canonical RD analysis at 5,000 cut-off is unable to credibly estimate effect of fiscal rules relaxation
- Intuition: exploit time variation in fiscal rules policy
 - "kill" variation in wage, which is fixed over time
 - take difference in regression discontinuity estimates
- More formally...

Identification

• The canonical cross-sectional RD regression

$$Y_{it} = \alpha + \beta D_i + \gamma P_i^* + \delta D_{it} P_i^* + \epsilon_{it}$$

where

- $D_i = 1[P_i^* > 0]$: assignment rule
- $P_i^* = P_i P_c$: normalized population size
- P_i : population size
- $P_c = 5,000$
- In this case, $\hat{\beta} = \tau^{RDD} = \tau^W + \tau^R$ \rightarrow i.e., sum of the effect of mayor's wage (τ^W) and fiscal rules relaxation (τ^R)

Identification

• Exploit longitudinal data

 $Y_{it} = \omega + \nu D_{it} + \xi P_i^* + \eta A_t + \lambda A_t D_i + \theta D_i P_i^* + \mu A_t P_i^* + \chi A_t P_i^* D_i + \epsilon_{it}$ where

• $A_t = 1[t \ge t_0]$ • $t_0 = 2001$

• In this case,

$$\begin{split} \hat{\lambda} &= \tau^{DRD} = \tau^{RDD,[t \ge t_0]} - \tau^{RDD,[t < t_0]} \\ &= \left(\tau^{R,[t \ge t_0]} + \tau^{W,[t \ge t_0]} \right) - \left(\tau^{R,[t < t_0]} + \tau^{W,[t < t_0]} \right) \\ &= \tau^R + \tau^W - \left(0 + \tau^W \right) \\ &= \tau^R \end{split}$$

Difference-in-discontinuities in practice

Validity of difference-in-discontinuities rests on same assumptions of RDD and DiD

- No change in **baseline covariates** at the cut-off, both before and after t_0
- No change in density of running variable, both before and after t_0
- Parallel trends

Research question

• Study the effect of fiscal rules relaxation on municipalities' fiscal discipline

Data

• Municipalities' balance sheets and socio-demographic characteristics

Empirical strategy

• Difference-in-discontinuities

Results – Fiscal gap & Deficit

FIGURE 1. DIFFERENCE-IN-DISCONTINUITIES FOR DEFICIT AND FISCAL GAP (1)

Notes: Vertical axis: difference of each post-rule (i.e., 2001, 2002, 2003, and 2004) outcome value and each pre-rule (i.e., 1999 and 2000) outcome value. Horizontal axis: actual population size minus 5,000. The central line is a spline third-order polynomial fit; the lateral lines represent the 95 percent confidence interval. Scatter points are averaged over intervals of 50 inhabitants.

Results – Revenues

FIGURE 3. DIFFERENCE-IN-DISCONTINUITIES FOR REVENUES OUTCOMES

Validity checks – Parallel trends

Validity checks – Continuity of density of running variable

Validity checks – Sensitivity to bandwidth

References and Materials

* = mandatory (only parts covered in class)

• (*) Grembi, V., Nannicini, T., and Troiano, U. (2016). Do Fiscal Rules Matter? *American Economic Journal: Applied Economics* 2016, 8(3): 1-30